
Controlled Self-Applicable On-Line Partial Evaluation, UsingStrategiesMattox Beckman� Sam KaminyDepartment of Computer ScienceUniversity of IllinoisUrbana, IL 61801fbeckman,kaming@cs.uiuc.eduAbstractOn-line partial evaluators are hardly ever self-applicable, because the complexity of decidingwhether to residualize terms causes combinatorial ex-plosion when self-application is attempted. Recently,T. Mogensen found a way to write a self-applicable on-line partial evaluator for �-calculus. His method is toregard every �-term as having both static and dynamicaspects; then, applications can always be done stati-cally (using the static aspect of the operator). How-ever, the absence of decision-making about residual-ization has a down side: his partial evaluator knowsonly how to fully reduce partially evaluated terms.The result is considerable code explosion. We showhow this problem can be overcome, in part, by chang-ing the type of the partial evaluator, and giving a newversion of the Futamura projections to correspond tothat new type. Speci�cally, we have the partial eval-uator take a third argument, called a strategy, which\advises" the partial evaluator whether to residualize.Strategies allow the programmer to control the trade-o� between the size of a specialized term and the costof subsequently applying it. We present a number ofstrategies and examples of each.Keywords: Partial evaluation, on-line partial evalua-tion, lambda calculus1 IntroductionIn the world of partial evaluators, there are on-linepartial evaluators and then there are self-applicablepartial evaluators, and there is little overlap betweenthem. On-line partial evaluators contain explicit testsfor staticness, and these tests tend to cause combi-natorial explosion when the partial evaluator is self-applied.[3, 6]�Partially supported by NASA grant NAG{1{613yPartially supported by NSF grant CCR 93{03043

Recently, Mogensen [4] found an ingenious solu-tion for creating a self-applicable on-line partial eval-uator for �-calculus. The idea is to interpret every�-expression as a pair of values: an equivalent �-expression and a function, essentially representing theapplication of that �-expression by �-reduction. Ap-plications are evaluated by applying the function partof the operator to the operand. We call this staticapplication, since it corresponds to partial evaluation-time �-reduction.The only problem with Mogensen's solution is thatthe results of self-applications of his partial evalua-tor are extremely large �-expressions, because �-termsare fully normalized. Mogensen states, \While self-application has been achieved, the results are not per-fect. Pgen is 136 times larger than P , which is exces-sive. The large size is mainly due to code duplicationcause by uncritical reduction of nonlinear redexes."Some applications should be performed dynamically,by creating an application of the �rst component of theoperator to the �rst component of the operand anddoing no further reductions. However, Mogensen'spartial evaluator does no dynamic applications, anda straightforward attempt to have it do so is doomedto fail, because of the danger of combinatorial explo-sion. That is, to have it decide at partial evaluationtime whether to perform each application statically ordynamically would lead to combinatorial explosion.In this paper, we present an approach to solvingthis problem. Our main idea is to give a new versionof the Futamura projections. In this version, partialevaluators have three arguments. In addition to thetraditional two | a binary function and its �rst ar-gument | there is a third argument, called a strat-egy. The strategy is responsible for deciding whetherto perform static or dynamic applications. Since it isnot itself part of the partial evaluator, it can make

(1) P dMe dNe = dMNe;where MN X =� MN X(2) P dPe ddMee = dMgenewhere Mgen dNe =� MN(3) P dPe ddPee = dPgenewhere Pgen ddMee =� MgenFigure 1: Original Futamura Projections(1) P dMe dNe � = dMNe;where MN X =� MN X(2) P dPe ddMee � = dMgenewhere Mgen dNe �0 =� dMNe(3) P dPe ddPee � = dPgenewhere Pgen ddMee �0 =� dMgeneFigure 2: Futamura Projections with Strategiesarbitrarily complex decisions without contributing tocombinatorial explosion when the partial evaluator isself-applied.The standard Futamura projections for the �-calculus[4] are in Figure 11. The modi�ed projectionsare in Figure 2. Though they look nearly identical,there is a big di�erence: With the standard version,the partial evaluator, P , is responsible for makingall static-vs.-dynamic application decisions. This ex-pands the size of P , so that if these decisions are at allcomplicated, self-application becomes impossible. Ac-cordingly, self-application is achieved in practice onlywhen arguments to P are pre-processed so that P 'sdecision-making is very simple. Our version allows Pto o�-load such decisions onto the strategy argument,allowing them to be made intelligently without com-promising the self-applicability of P .Strategies �t neatly into Mogensen's approach.Since the pair of values associated with a �-expressioncontains both an expression and a function, the de-cision of whether to apply statically or dynamicallycorresponds to a decision of which part of the pair touse. The strategy argument is invoked whenever thepartial evaluator does an application, and it makesthat decision. Providing di�erent strategies permits atrade-o� between the size of residual terms and theire�ciency.1The d�e notation indicates a conversion to higher order ab-stract syntax; a speci�c de�nition is given in section 2. Thedouble encoding seen in the second and third projection occursbecause the �rst argument is itself a partial evaluator and ex-pects its input to be in higher order abstract syntax.

We have not, unfortunately, been able to solve thecombinatorial explosion problem in precisely the waythat Mogensen suggested. Since Mogensen's approachrelies heavily on the use of higher-order abstract syn-tax, it is impossible to count occurrences of variables,so we cannot determine which redexes are non-linear.However, we have a variety of strategies that give in-teresting results.Strategies are a kind of program annotation direct-ing the actions of the partial evaluator. The use ofsuch annotations is far from new | indeed, the earli-est self-applicable partial evaluators required explicitstatic/dynamic annotations [2]. More sophisticatedannotations for practical partial evaluation have beenstudied by several researchers [1, 6, 7], particularly inthe context of on-line partial evaluation. The contri-bution of this paper is not in the particular strategieswe present | indeed, our strategies are rather weak,being constrained by the higher-order abstract syn-tax representation of terms. Rather, it is the way ourstrategies are incorporated into the partial evaluatorso as not to interfere with self-application.In the next section, we review Mogensen's resultsfrom [4]. We then present the idea of strategies, andour strategy-based partial evaluator in section 3. Insection 4, we discuss self-application of our partialevaluator. In section 5, we change the representationof �-expressions slightly, in a way that permits the def-inition of more strategies. In the �nal section, we showthat the results of binding-time analysis can be incor-porated into a strategy-based o�-line partial evalua-tor, demonstrating that our approach in a sense sub-sumes the BTA-based partial evaluators; we do thiswith yet another change of representation, in whichexpressions contain annotations which are written bya pre-processor and read by the strategy.2 Mogensen's resultMogensen's self-applicable on-line partial evalua-tor is most easily understood by considering each �-expression to denote a value that contains both static(function) and dynamic (expression) parts. We callsuch values \partial evaluation values," or PEV 's:PEV = (PEV ! PEV)� ExprThe type Expr contains abstract syntax trees(AST's) representing �-expressions. Without sayingexactly how AST's are represented (for now), we willjust postulate the existence of abstract syntax opera-tors App, Abs and V ar. App takes two AST's to theAST representing their application, and V ar takes avariable to an AST. Abs takes an abstraction mapping

�-terms to AST's, and transforms it into an AST. Thiscontrasts with the usual approach in which Abs takesas arguments a variable and an AST and returns anAST. The di�erence is just the di�erence between thehigher-order abstract syntax used here and the �rst-order abstract syntax usually used [5].�-expressions are translated to PEV 's by the fol-lowing rules. Note that these rules apply only to closedexpressions, so the translation of variables is techni-cally \auxiliary." In particular, [[x]] = x is not a PEVbut, given this rule, the translations of applicationsand abstractions to produce PEV's.[[�]] : � ! PEV[[x]] 7! x[[m n]] 7! [[m]]1 [[n]][[�x:e]] 7! let g = �x:[[e]]in < g; Abs(�w:(g (D(V ar(w))))2) >where D : Expr ! PEV = �e: < �v:D(App(e; v2)); e >The translation of abstractions merits some expla-nation. An abstraction �x:e is easily translated to afunction from PEV 's to PEV 's, namely g = �x:[[e]].The problem is to turn that function into a PEV .The function component2 of the PEV is g itself; thedi�cult part is constructing the expression compo-nent, that is, going from a function to an expression.This is done by applying g to the PEV representinga variable (D(V ar(w))) and abstracting that variable(Abs(�w: : : :)). To turn the variable V ar(w) into aPEV , we apply D, a function that takes any expres-sion to a PEV . D(e) has e as its expression compo-nent and, for its function component, has the functionF : PEV ! PEV that \textually" applies e. Thatis, given any PEV < : : : ; e0 >, F returns the PEV< F 0; App(e; e0) >, where F 0, when applied to PEV< : : : ; e00 >, returns < : : : ; App(App(e; e0); e00) >, andso on.A term is reduced by projecting the expression com-ponent of this translation. The partial evaluator cre-ates an application node from its two arguments andnormalizes it.normalize e = [[e]]2PE m n = normalize(m n)The following reduction sequence illustrates the op-eration of the partial evaluator.2We will often call the �rst and second components of a PEVthe function and expression components, respectively.

PE (�x:((�y:y y) (�z:z))) (�q:q)! normalize ((�x:((�y:y y) (�z:z))) (�q:q))! [[(�x:((�y:y y) (�z:z))) (�q:q)]]2! ([[(�x:((�y:y y) (�z:z)))]]1 [[(�q:q)]])2! ((�x:[[((�y:y y) (�z:z))]]) [[(�q:q)]])2! ([[((�y:y y) (�z:z))]])2! ([[(�y:y y)]]1 [[(�z:z)]])2! ((�y:[[y y]]) [[(�z:z)]])2! ((�y:[[y]]1 [[y]]) [[(�z:z)]])2! ((�y:y1 y) [[(�z:z)]])2! ([[(�z:z)]]1 [[(�z:z)]])2! ((�z:[[z]]) [[(�z:z)]])2! ((�z:z) [[(�z:z)]])2! ([[(�z:z)]])2! Abs(�w:((�z:z)(D(V ar(w))))2)! Abs(�w:(D(V ar(w)))2)! Abs(�w:V ar(w))Mogensen shows how to render these ideas into �-calculus. First, we need to represent the abstract syn-tax of �-terms within �-calculus. A �-term e is trans-lated to an Expr by the function d�e, de�ned as:dee = �a�b:�e; where x = xm n = a m n�x:e = b (�x:e)Then, an Expr is translated to a PEV by applying itto terms A and B:A = �p:�p0:p1 p0B = �g: < g; (�ab:b (�w:(g (D �ab:w))2 a b)) >D = Y �d:�m: < m; (�v:d (�ab:a (m a b) (v2 a b))) >In other words, [[e]] = deeAB. In the implementation,it is necessary to convert the arguments of the partialevaluator into higher order abstract syntax �rst. So,while [[�]] operates on terms of type �, the �-term cor-responding to it in our implementation, which we callP, operates on Expr's.The code for the complete partial evaluator is givenin Figure 3, in the form of the input to our top-level�-calculus reducer. Backslash represents �, semicolonrepresents the end of a term, and colon-equal assignsvalues into an environment (but only at the top level).Note the �-calculus coding of pairs < a; b > as func-tions �sel:sel a b.In Figure 3, the D term has been rewritten as aself-application of a similar term Q. This has the ef-fect of delaying recursion until all the arguments to Dare known, and eliminating the need for the Y com-binator. This was necessary since an explicit use of

P := \m n. R (\a b. a (m a b) (n a b));R := \m. m A B F;A := \m n. m T n;B := \g. \sel. selg (\a b. b (\w. g (D \a b. w) F a b));D := Q Q;Q := \q. \m.(\sel. sel (\qq. \v.qq qq (\a b. a (m a b)(v F a b)))(\qq. m)q);F := (\fst snd. snd);T := (\fst snd. fst);Figure 3: Mogensen's partial evaluatorY will result in a term with no normal form, and willcause non-termination when the partial evaluator isself-applied. This rewriting trick will show up in ourpartial evaluator as well.The ability to perform partial evaluation withoutneeding to decide explicitly whether or not a termis static makes self-application feasible. Mogensen isable to self-apply P , according to the Futamura pro-jections in Figure 1. The idea, as usual, is that whenM is a 2-argument function and N is its �rst argu-ment, P dMedNe returns the representation dMN e ofan expression MN . For any X, MN X =� M N X,but MN X normalizes more quickly than M N X.Mogensen uses as his main example this de�nitionof the Ackermann function:Ack = �mn:m (�fm:f (m f (�x:x)))(�mfx:f (m f x)) nSome of his results are summarized in Table 1. The� column indicates the speedup, measured in �-reductions, obtained by applying P dMedNe to an ar-gument X, as compared to calculating M N X di-rectly. For example, it takes 2.7 times as many �-reductions to produce Ack1 by calculating P dAcke d1eas it does to produce it by applying Ackgen to d1e.3 StrategiesMogensen's partial evaluator, being on-line, doesnot have the bene�t of a binding-time analysis to tellit when to statically or dynamically apply. If it hadto make such decisions itself, it would su�er combina-torial explosion. So it just �-reduces everything. Thissimpli�cation makes self-application possible, but alsoresults in very large residual terms, as seen in Table 1.In short, his partial evaluator has no e�ective controlof the partial evaluation process.

Expression Size � �Ack 0 3 ! 4 7Ack 1 3 ! 5 19Ack 2 3 ! 9 76P dAcke d0e ! dAck0e 10 119P dAcke d1e ! dAck1e 24 253P dAcke d2e ! dAck2e 52 512Ack0 3 ! 4 3 2.3Ack1 3 ! 5 13 1.5Ack2 3 ! 9 65 1.2P dPe ddAckee ! dAckgene 693 8095Ackgen d0e ! dAck0e 10 56 2.1Ackgen d1e ! dAck1e 24 94 2.7Ackgen d2e ! dAck2e 52 180 2.8P dPe ddPee ! dPgene 17819 268481Table 1: Excerpt from Table 2 of [4]We provide this control by giving the partial evalu-ator a third argument, called a strategy. The strategytells the partial evaluator what to do when one PEVis applied to another. The de�nition of PEV changesto: PEV = Strategy ! ResultResult = (PEV ! Result) � ExprStrategy = PEV ! PEV ! ResultAgain, a �-term is translated into a PEV . Whengiven a strategy | indicating how to handle appli-cations that arise when normalizing this term | theterm returns a pair similar to the pairs described inthe previous section.The translation of �-terms needs to be modi�ed.As above, [[e]] is the PEV associated with e:[[x]] 7! x[[m n]] 7! ��: � [[m]] [[n]][[�x:e]] 7! let g = �x:([[e]] �) in< g; Abs(�w:(g (D(V ar(w))) �)2) >where D e � = < Abs(�v:D(App(e; (v �)2)) �); e >The partial evaluator is modi�ed so as to take athird argument:normalize e � = ([[e]] �)2PE m n � = normalize (m n) �What does a strategy look like? Basically, givenPEV � to be applied to PEV �0, a strategy can eitherstatically apply � | which means applying the func-tion component of � to �0 | or dynamically apply it| meaning create an application node containing the

expression components of � and �0. The simplest ex-ample is the strategy that uniformly performs staticapplication: �all = ��:(� �all)1That is, given PEV's � and �0, �all supplies itself to� (this says that the operator should be normalizedusing the �all strategy), which produces a Result. Itthen selects the function component of this Result toapply to �0.When �all is used, the results are identical to thoseof Mogensen. To give a simple example:PE (�x:((�y:y y) (�z:z))) (�q:q) �all= Abs(�z:z)= d�z:zeHere is the �rst half of the reduction sequence. Itshows how �all forces the outer �-reduction to be done| eliminating the �q:q term | and is then used asthe strategy for reduction of the resulting term:PE (�x:((�y:y y) (�z:z))) (�q:q) �all! normalize ((�x:((�y:y y) (�z:z))) (�q:q)) �all! ([[(�x:((�y:y y) (�z:z))) (�q:q)]]�all)2! (�all [[(�x:((�y:y y) (�z:z)))]] [[(�q:q)]])2! (([[(�x:((�y:y y) (�z:z)))]] �all)1 [[(�q:q)]])2! ((�x:[[((�y:y y) (�z:z))]] �all) [[(�q:q)]])2! ([[((�y:y y) (�z:z))]] �all)2! � � �! Abs(�z:V ar(z))We give examples of the use of our partial evaluatoron the Ack function in Table 2; these should be com-pared to Mogensen's results in Table 1. For instance,we see from Table 1 that in Mogensen's partial evalu-ator, P dAcked2e yields Ack2, and that Ack2 3 reducesto 9 in 65 �-reductions. In the top part of Table 2 wesee the analogous results from our partial evaluator.Speci�cally, P dAcked2e�all , which we call Ack2;all,corresponds directly to Mogensen's Ack2; the tableshows that Ack2;all 3 reduces to 9 in 65 �-reductions.Another simple strategy is not to �-reduce at all,but to do only dynamic applications:�none = ��:(D ((� �none)2) �none)1Given � and �0, �none (also denoted as �0) �rst re-duces the operator �, using the non-reducing strategy,then takes the expression components of the result andturns it into a PEV by applyingD. Recall that D pro-duces a PEV that always does dynamic application (toany number of arguments).

The e�ect of �none is to form an application nodeand otherwise do no reduction. For example,PE (�x:((�y:y y) (�z:z)) (�q:q)) �none= App(Abs(�x:App(Abs(�y:App(y; y));Abs(�z:z))); Abs(�q:q))= d(�x:((�y:y y) (�z:z)) (�q:q))eThe �rst four steps of the reduction sequence aresimilar to that of �all :PE (�x:((�y:y y) (�z:z))) (�q:q) �none! normalize ((�x:((�y:y y) (�z:z))) (�q:q)) �none! ([[(�x:((�y:y y) (�z:z))) (�q:q)]]�none)2! (�none [[(�x:((�y:y y) (�z:z)))]] [[(�q:q)]])2! ((D(([[(�x:((�y:y y) (�z:z)))]] �none)2) �none)1[[(�q:q)]])2At this point, D forms a residual expression out of itsargument and residualizes future applications of thatargument.To again compare our results to Mogensen's di-rectly, if we denote P [Ack] [2] �none by Ack2;none, wesee in Table 2 that Ack2;none 3 reduces to 9 after 76 �-reductions, compared to the 65 for Ack2;all. Of course,it takes fewer �-reductions to calculate Ack2;none and,perhaps more importantly,Ack2;none is smaller. Thus,we begin to see in the �rst few lines of Table 2 howstrategies allow us to trade speed for size (and partialevaluation time).We can get intermediate levels of expansion. Strat-egy �n n performs the �rst n �-reductions (for somen) and then no more.�n = �n:n (�E:��:(� E)1) �noneHere, n is a church numeral which will cause the �Eterm to be applied n times, followed by �none. Forexample,PE (�x:((�y:y y) (�z:z)) (�q:q)) (�n 1)= App(Abs(�y:App(y; y)); Abs(�z:z))= d((�y:y y) (�z:z))eIn other words, the evaluator did one �-reduction |the outer one | and then stopped.Table 2 shows results using �n with Ack, for n =1, 4, and 8. We can see that as we go from (�1)up to (�8), both the cost of computing the residualfunction and its size increase, while the cost of ap-plying that residual function decreases. In particular,the e�ciency of these residuals fall between those ofAck2;none and Ack2;all.Another \counting" strategy is the one that ab-stains from doing top-level reductions, but does re-ductions within subexpressions:

P := \m n s. R (\a b. a (m a b) (n a b)) s F;R := \m. m A B;B := \g s. (\ sel. sel(\x. g x s)(\a b. b (\z. (snd (g (D (\a b. z)) s))a b)));A := \m n s. s m n;D := (DQ DQ);DQ := \q. \v. \s. (\sel. sel(\qq. \w. (qq qq)(\a b. a (v a b)(fst (w s) a b)) s)(\qq. v)q);fst := \pair. pair (\fst snd. fst);snd := \pair. pair (\fst snd. snd);T := \fst snd. fst;F := \fst snd. snd;Y := (\h. (\x. h (x x)) (\x. h (x x)));E_all := Y (\E. \pi. (fst (term E)));E_none := Y (\E. \pi. fst(D (snd (term E)) E));E_n := \n. n (\E. \pi. fst (term E)) E_none;E_below-n := \ n. n (\E. \pi. fst(D (snd (term E)) E)) E_all;Figure 4: Strategy-based partial evaluator�below;n = �n:n (�E:��:(D (� E)2 E)1 �allThis applies D (the dynamic applier) n times, thenreverts to �all. This strategy might be useful for re-ducing the arguments of an application without per-forming the application itself:PE (�x:((�y:y y) (�z:z)) (�q:q)) (�below;n 2)= App(Abs(�x:Abs(�z:z)); Abs(�q:q))= d(�x:(�z:z)) (�q:q)eOn the other hand, �below;n n, for any n > 0, isno di�erent from �none when used with Ack, sincethe operators and operands in those examples are innormal form, and �below;n 0 is always identical to �all ,so we have not included this strategy in Table 2.The �-calculus version of the strategy-based par-tial evaluator is given in Figure 4. It is very similarto Mogensen's partial evaluator (corresponding to thesimilarity of the de�nitions of [[�]] here and in section 2).Figure 4 also gives the �-calculus de�nitions of thestrategies we have de�ned in this section. Note thatalthough we need to use Mogensen's trick in the def-inition of D to avoid non-termination, we can freelyuse explicit recursion in the de�nitions of strategies.

This is because strategies are only executed by thepartial evaluator, and never processed as a term to bepartially evaluated, even during self-application of thepartial evaluator.4 Self-application with strategiesOur version of the Futamura projections (Figure 2)looks almost exactly like Mogensen's. The di�erence isthat the results of partial evaluation here may not bein completely reduced form. The strategies are usedto postpone some �-reductions. The most aggressivestrategy | namely, �all | will produce the same re-sults that Mogensen obtains, but other strategies willproduce expressions that are less reduced.The crucial feature of self-application with strate-gies is that the strategies are, so to speak, \o� bud-get." The strategies never appear in residual code3 ,so no matter how complicated the strategy used, theability to self-apply the partial evaluator is not im-paired. For example, a strategy of the form (��: if<very complicated, but terminating, condition> then�none else �none) is equivalent to �none.Furthermore, a strategy is used for only a single ap-plication of the partial evaluator. For example, sup-pose the second Futamura projection is used to createa specialized partial evaluator: P dP e ddMee � =dMgene. When Mgen is applied, it will be suppliedwith another, perhaps di�erent, strategy �0. Thus,Mgen might be produced using a non-aggressive strat-egy like �none (so it will be small), but then appliedusing an aggressive strategy (�all). Of course, the lat-ter application will be more costly than if Mgen hadbeen produced using �all, but that is the entire point:trading space for time.Table 2 presents a sampling of results of variousprojections with various strategies. The applicationsthat use �all are directly comparable to Mogensen'sresults. The size of the results of the �rst projection,when �all is the strategy, are of course identical to Mo-gensen's. The sizes for the other projections are larger,because our partial evaluator is somewhat larger. (In-deed, we have been unable to generate Pgen with the�all strategy, because it is too large. By using lessaggressive strategies we are able to get some approx-imations (i.e., Pgen10; Pgen30; and Pgen70) but the re-sulting programgenerators have too many residualizedexpressions, and so partial evaluation actually yieldsa slowdown.) The bottom section of the table showsthe application of our partial evaluator to Mogensen's3This is not completely accurate, since a strategy that per-forms a residualizationwill need to supply the actual applicationnode itself, but none of the strategy's \decision making" codewill be left in the residual code.

Expression Size � �Ack 2 3! 9 21 76P [Ack] [2] �all ! Ack2;all 52 744P [Ack] [2] �0 ! Ack2;0 35 492P [Ack] [2] �1 ! Ack2;1 32 466P [Ack] [2] �4 ! Ack2;4 35 523P [Ack] [2] �8 ! Ack2;8 49 791Ack2;0 3! 9 21 76 1:0Ack2;1 3! 9 21 75 1:013Ack2;4 3! 9 21 73 1:041Ack2;8 3! 9 21 69 1:101Ack2;all 3 ! 9 21 65 1:169P [P] [[Ack]] �0 ! Ackgen;0 506 3120P [P] [[Ack]] �8 ! Ackgen;8 339 4746P [P] [[Ack]] �64 ! Ackgen;64 5532 76427P [P] [[Ack]] �96 ! Ackgen;96 3848 51104P [P] [[Ack]] �all ! Ackgen;all 3842 51072Ackgen;0 [2]! Ack2 52 758 0:981Ackgen;8 [2]! Ack2 52 751 0:991Ackgen;64 [2]! Ack2 52 621 1:198Ackgen;96 [2]! Ack2 52 510 1:459Ackgen;all [2]! Ack2 52 510 1:459P [P] [[P]] �10 ! Pgen10 644 9184P [P] [[P]] �50 ! Pgen50 47672 643247P [P] [[P]] �70 ! Pgen70 170154 2297039P [P] [[P]] �all ! Pgenall ? ?Pgen10 [[Ack]] �all ! Ackgen;all 3842 52022 0:982Pgen50 [[Ack]] �all ! Ackgen;all 3842 51992 0:982Pgen70 [[Ack]] �all ! Ackgen;all 3842 51520 0:991P [mP] [[mP]] �all ! mPgen;all 18083 408860P [mP] [[mP]] �10 ! mPgen;10 528 7487P [mP] [[mP]] �50 ! mPgen;50 8188 110161P [mP] [[mP]] �100 ! mPgen;100 23893 321046P [mP] [[mP]] �500 ! mPgen;500 19976 431987mPgen;all [[Ack]] ! Ackgen 693 2422 3:342mPgen;10 [[Ack]] ! Ackgen 693 8124 0:996mPgen;50 [[Ack]] ! Ackgen 693 8090 1:001mPgen;100 [[Ack]] ! Ackgen 693 7746 1:045mPgen;500 [[Ack]] ! Ackgen 693 2503 3:234Table 2: Results of the strategy-based partial evalua-tor(denoted mP in the chart); we have included thesenumbers because they can be compared even more di-rectly to those in Table 1.The results are rather di�cult to read, becausethere are several degrees of freedom. What is of great-est interest is the trade-o� between the size of residualcode and the cost of applying it. For the third projec-tion, note that while more aggressive expansions yieldversions of Pgen that take fewer �-reductions to pro-duce Ackgen, the code size grows dramatically.5 More strategiesThe strategies of the previous section are oblivi-ous to the properties of the expressions being evalu-ated. Obvious strategies like \expand if the argument

is small," \expand calls to function f , but no oth-ers," and \expand if there is only one occurrence ofthe bound variable in the body of the �-expression"cannot be written. In this section, we make a simplechange in the abstract syntax of �-terms which will al-low the �rst of these strategies to be written. To writethe second requires a further change of representationwhich we postpone to the next section. To write thethird strategy | the one suggested by Mogensen |seems to be impossible when terms are represented inhigher-order abstract syntax; switching to �rst-orderabstract syntax is a possibility that we are currentlyexploring (see the conclusions).The representation of �-terms given in section 2 isnot the most general representation of higher-order ab-stract syntax trees of �-terms. In that representation,variables are treated specially, making some calcula-tions impossible. We have used that representation tomake our results directly comparable to those of Mo-gensen. However, to allow for expressing more strate-gies, we will now change the representation as follows:e is again represented by the term dee, wheredee = �a�b�c:e; where x = c x�x:e = b (�x:e)mn = a m nThe di�erence is the application of AST operator c tovariables.Now we can, for example, determine the size of alambda expression:size e = dee (�mn:inc (plus m n))(�g:inc (g 1))(�x:1)Before using strategies based on this new capability,we need to change the partial evaluator slightly toaccommodate the new representation. The new codeis shown in Figure 5.The results obtained previously, shown in Table 2,will change slightly, because representations of termsare larger. But now we can write more interestingstrategies, such as �small :�small = �n:��:��0:let r = � (�small n)and r0 = �0 (�small n)in if size(r02) � nthen r1 �0else (D r2 (�small n))1 �0This strategy takes as its arguments a number n andtwo terms � and �0. After applying itself to its ar-gument �0, it checks to see if the size of the resulting

R := \m. m A B C;P := \m n s. R (\a b c. a (m a b c)(n a b c)) s F;C := \x.x;B := \g s sel.sel (\x. g x s)(\a b c. b (\z.(snd (g (D (\a b c. c z)) s)) a b c));A := \m n s. s m n;D := (DQ DQ);DQ := \q. \v. \s.(\sel. sel(\qq. \w. (qq qq)(\a b c. a (v a b c)(snd (w s) a b c)) s)(\qq. v)q);Figure 5: Strategy-based partial evaluator, with mod-i�ed term representationexpression r0 is smaller than or equal to n. If so, itthen reduces � by applying it to �all , otherwise itresidualizes �.Here is the running example modi�ed slightly toillustrate the operation of �small. First we use(�small 1):PE (�x:((�y:y y) (�z:z)) (�q:q q)) (�small 1)= App(Abs(�x:App(Abs(�y:App(y; y));Abs(�z:V ar z))); Abs(�q:App(V ar q; V ar q)))= d(�x:((�y:y y) (�z:z))) (�q:q q)eSince the smallest argument in the example is (�z:z),which has a size of 2, no applications are performed.Next we use (�small 2):PE (�x:((�y:y y) (�z:z)) (�q:q q)) (�small 2)= App(Abs(�x:Abs(�z:V ar z));Abs(�q:App(V ar q; V ar q)))= d(�x:(�z:z)) (�q:q q)eThe outer argument (�q:q q) has a size of 6, so it isresidualized. However, the argument (�z:z) inside thebody of the outermost function is small enough, so the(�y:y y) is applied to it. The result is (�z:z) (�z:z),which again meets (�small 2)'s criteria for reduction,so it is reduced to (�z:z).If we use (�small 6), the entire expression is re-duced.Keep in mind that these strategies, though verycostly to apply (especially since all arithmetic is doneusing Church numerals), do not appear in residual

code and therefore do not impede self-application ofthe partial evaluator.Often strategies produce unexpected results. Forexample, consider the term((�a:(�b:(�c:c) (�r:r r)) (�x:x)) (�q:q q))There are three applications at the top level. If we ap-ply the (�small 3) strategy none of these applicationswill be performed, even though the argument to the�b term has a size of 2. This is because the argumentto the �a term has a size of 6, and must be performed�rst in order for the �b redex to be reachable. Whatwe need is a strategy that behaves like �all for onelevel, and then behaves like �small afterwards.The solution is to compose strategies. For this ex-ample, we want a strategy that will perform the �rstfew �-reductions at the top level, and then gives con-trol to �small . This new strategy is called �n;then,and is a generalization of �n.�n;then = �n:��:n (�E:��:(� E)1) �Thus, (�n;then n �) performs �-reductions at the topn levels of the term, then reverts to �.Using this strategy with our example gives us:PE ((�a:(�b:(�c:c) (�r:r r)) (�x:x)) (�q:q q))(�n;then 1 (�small 3))= d(�c:c) (�r:r r)eThe �rst two applications were reduced, while thethird was residualized.These strategies allow �ner control of partial eval-uation in self-application as well. For example, wecan create an Ackgen using the second projection. Ifwe use the �none strategy, Ackgen is of size 269, andneeds 845 �-reductions to execute when applied to 2and �all. If we use (�n;then 5 (�small 20)) the size is263, and needs 843 �-reductions. Finally, using �allresults in a much larger term of size 4446, but it onlyneeds 548 �-reductions. Lack of space prevents usfrom presenting more experimental results.6 AnnotationsSome desired strategies | such as expanding callsto speci�c, named functions | cannot be expressed,because they are based on extrinsic considerations.We can accommodate these strategies by changing therepresentation yet again, to include an annotation �eldin each �-term. Though this clearly crosses the linefrom on-line to o�-line partial evaluation | since theannotations on each term will be made by some pre-processing step | we feel it is still interesting to see

how strategies can use these annotations. Further-more, it demonstrates that the use of strategies is insome sense more general than the use of binding-timeanalysis.For our �nal change of representations, we add anannotation �eld to abstractions. For this example theannotation will be a boolean value which expresseswhether or not we want to perform a �-reduction ifgiven the opportunity. Annotations of this type arediscussed in chapter 7 of [3].A �-expression e is represented by�abc:e; where x = (c x)�x:e = (b X �x:e)mn = (a m n)X is T or F:The translation of terms to PEV 's must take into ac-count the transmission of annotations from one termto another:[[x]] 7! x[[m n]] 7! ��: � [[m]] [[n]][[�x:e]] 7! let g = (�x:[[e]] �) in< T; < g;Abs(�w:(g D(V ar(w))�)1) >>Our last version of the partial evaluator is shown inFigure 6.Because the representation of expressions haschanged, strategies such as �none will need to be mod-i�ed. Projecting the �rst element from the Result pairreturns another pair consisting of the annotation andthe expression. Here is the modi�ed �none:�none = ��:((D ((� �none)2)2 �none)2)1A more interesting strategy is �marked:�marked = ��:let r = � �markedin if r1 then (r2)1else ((D ((t �none)2)2 �none)2)1Similar to �small , it �rst applies its argument � toitself to get r. But instead of checking the size of r,it checks the annotation �eld. If that is true, then itreturns the static part of r; otherwise, it uses �noneand D to residualize.As an example, consider the expression from theprevious section. With �marked we could annotate the�rst two abstractions to be reduced, and the �nal oneto be residualized. Here is the example again, with theabstractions marked for residualization underlined.

R := \m. m A B C;P := \m n s. R (\a b c. a (m a b c)(n a b c)) s F F;C := \x.x;B := \n g s. (\ sel. sel n(\selExp. selExp(\x. g x s)(\a b c. b T (\z.(fst (snd (g (D (\a b c. c z))s))) a b c)))A := \m n s. s m n;D := (DQ DQ);DQ := \q. \v. \s. (\sel. sel T(\selExp. selExp(\qq. \w. (qq qq)(\a b c. a (v a b c)(snd (snd (w s)) a b c)) s)(\qq. v)q));Figure 6: Strategy-based partial evaluator, using an-notationsPE ((�a:(�b:(�c:c) (�r:r r)) (�x:x)) (�q:q q)) �marked= d(�c:c) (�r:r r)eIf a binding time analyzer were employed to an-notate terms, our partial evaluator with the �markedstrategy would mimic an o�-line partial evaluator.7 ConclusionsWe have presented a technique for control-ling on-line partial evaluation while preserving self-applicability. Strategies are used by the partial eval-uator as \advisors" on when to �-expand, but do notappear in residual code. Thus, no matter how compli-cated the decision-making process they employ, self-applicability is not compromised. Strategies can con-sider intrinsic properties of �-terms and, crossing overinto the realm of o�-line partial evaluation, can con-sider annotations on terms that express the results ofpre-processing.A number of research problems present themselvesfrom this work. The results obtained from many ofthe strategies we have de�ned are far from intuitive.A more systematic experimental study of space-timetrade-o�s in partial evaluation could lead to a betterunderstanding of what approaches to partial evalua-tion are best. It would also be interesting to incor-porate binding-time analysis into strategies; section 6

discussed how this can be done, but we have not yetexperimented with an actual binding-time analyzer.Note that strategies allow for partial evaluation ofterms that have no normal form, that is, terms withexplicit recursion. This fact could allow us to substan-tially simplify and generalize P .The systematic construction of strategies by wayof a \strategy algebra" seems well within reach, andwould be useful. �n;then is an example of a simplecomposition of strategies, and it would appear thatmany such combinations are possible.The most exciting possibility for this approach isthat strategies might be applicable in partial evalua-tors based on �rst-order abstract syntax. This wouldgo a long way toward bridging the gap between on-lineand self-applicable partial evaluators. Strategies couldmake static-vs.-dynamic decisions with great preci-sion, as is now done only in on-line partial evaluators,yet self-applicability would be preserved.AcknowledgmentsWe would like to thank our colleagues Uday Reddyand Bill Harrison for helpful discussions over thecourse of this research.References[1] B. Grant, M. Mock, M. Philipose, C. Chambers,S. Eggers, Annotation-Directed Run-Time Special-ization in C, Proc. ACM SIGPLAN Symposiumon Partial Evaluation and Semantics-Based Pro-gram Manipulation (PEPM), June 1997. Amster-dam, Netherlands.[2] Neil D. Jones, Peter Sestoft, and Ha raldS�ndergaard. Mix: A self-applicable partial eval-uator for experiments in compiler generation. Lispand Symbolic Computation, 2(1):9{50, 1989. DIKUReport 91/12.[3] Neil D. Jones, Carsten K. Gomard, and Peter Ses-toft. Partial Evaluation and Automatic ProgramGeneration. Prentice Hall International Series inComputer Science. Englewood Cli�s, NJ: PrenticeHall, 1993.[4] Torben �. Mogensen. Self-applicable online par-tial evaluation of the pure lambda calculus. In Par-tial Evaluation and Semantics-Based Program Ma-nipulation, La Jolla, California, June 1995, pages39{44. New York: ACM, 1995.[5] Frank Pfenning and Conal Elliott. Higher-orderabstract syntax. In Proceedings of the ACM SIG-PLAN '88 Symposium on Language Design and

Implementation, pages 199{208, Atlanta, Georgia,June 1988.[6] Eric Ruf. Topics in Online Partial Evaluation.PhD thesis, Stanford University, California, Febru-ary 1993. Published as technical report CSL-TR-93-563.[7] E. Volanschi, C. Consel, G. Muller, C. Cowan,Declarative specialization of objet-oriented pro-grams. OOPSLA '97, Atlanta, Oct. 1997, pp. 286{300.

