Controlled Self-Applicable On-Line Partial Evaluation, Using
Strategies

Mattox Beckman*

Sam Kamin!

Department of Computer Science
University of Illinois

Urbana, IL 61801

{beckman kamin}@cs.uiuc.edu

Abstract

On-line partial evaluators are hardly ever self-
applicable, because the complexity of deciding
whether to residualize terms causes combinatorial ex-
plosion when self-application is attempted. Recently,
T. Mogensen found a way to write a self-applicable on-
line partial evaluator for A-calculus. His method is to
regard every A-term as having both static and dynamic
aspects; then, applications can always be done stati-
cally (using the static aspect of the operator). How-
ever, the absence of decision-making about residual-
ization has a down side: his partial evaluator knows
only how to fully reduce partially evaluated terms.
The result is considerable code explosion. We show
how this problem can be overcome, in part, by chang-
ing the type of the partial evaluator, and giving a new
version of the Futamura projections to correspond to
that new type. Specifically, we have the partial eval-
uator take a third argument, called a strategy, which
“advises” the partial evaluator whether to residualize.
Strategies allow the programmer to control the trade-
off between the size of a specialized term and the cost
of subsequently applying it. We present a number of
strategies and examples of each.

Keywords: Partial evaluation, on-line partial evalua-
tion, lambda calculus

1 Introduction

In the world of partial evaluators, there are on-line
partial evaluators and then there are self-applicable
partial evaluators, and there 1s little overlap between
them. On-line partial evaluators contain explicit tests
for staticness, and these tests tend to cause combi-
natorial explosion when the partial evaluator is self-
applied.[3, 6]

*Partially supported by NASA grant NAG-1-613

tPartially supported by NSF grant CCR 93-03043

Recently, Mogensen [4] found an ingenious solu-
tion for creating a self-applicable on-line partial eval-
uator for A-calculus. The idea is to interpret every
A-expression as a pair of values: an equivalent A-
expression and a function, essentially representing the
application of that A-expression by g-reduction. Ap-
plications are evaluated by applying the function part
of the operator to the operand. We call this static
application, since it corresponds to partial evaluation-
time S-reduction.

The only problem with Mogensen’s solution is that
the results of self-applications of his partial evalua-
tor are extremely large A-expressions, because A-terms
are fully normalized. Mogensen states, “While self-
application has been achieved, the results are not per-
fect. Pyen is 136 times larger than P, which is exces-
sive. The large size is mainly due to code duplication
cause by uncritical reduction of nonlinear redexes.”
Some applications should be performed dynamically,
by creating an application of the first component of the
operator to the first component of the operand and
doing no further reductions. However, Mogensen’s
partial evaluator does no dynamic applications, and
a straightforward attempt to have it do so is doomed
to fail, because of the danger of combinatorial explo-
sion. That 1s, to have it decide at partial evaluation
time whether to perform each application statically or
dynamically would lead to combinatorial explosion.

In this paper, we present an approach to solving
this problem. Our main idea is to give a new version
of the Futamura projections. In this version, partial
evaluators have three arguments. In addition to the
traditional two — a binary function and its first ar-
gument — there is a third argument, called a strat-
egy. The strategy is responsible for deciding whether
to perform static or dynamic applications. Since it is
not itself part of the partial evaluator, it can make

(1) P[M][N] = [Mn],
where My X =g M N X

(2) PP [[M]] = [My]
where Myen [N] =5 My

(3) PIPI[[P]] = [Pyn]
where Pyer, [[M]] =p Mgen

Figure 1: Original Futamura Projections

(1) P[M][N]Z = [Mn],
where My X =g M N X
(2) PIPI[MI]S = [My.]
where Mgen [N] Z' =5 [My]
(3) PIPI[IPI] Z = [Pyenl
where Pyer, [[M]] £ =5 [Mgen]

Figure 2: Futamura Projections with Strategies

arbitrarily complex decisions without contributing to
combinatorial explosion when the partial evaluator is
self-applied.

The standard Futamura projections for the A-
calculus[4] are in Figure 1'. The modified projections
are in Figure 2. Though they look nearly identical,
there is a big difference: With the standard version,
the partial evaluator, P, is responsible for making
all static-vs.-dynamic application decisions. This ex-
pands the size of P, so that if these decisions are at all
complicated, self-application becomes impossible. Ac-
cordingly, self-application is achieved in practice only
when arguments to P are pre-processed so that P’s
decision-making is very simple. Our version allows P
to off-load such decisions onto the strategy argument,
allowing them to be made intelligently without com-
promising the self-applicability of P.

Strategies fit neatly into Mogensen’s approach.
Since the pair of values associated with a A-expression
contains both an expression and a function, the de-
cision of whether to apply statically or dynamically
corresponds to a decision of which part of the pair to
use. The strategy argument is invoked whenever the
partial evaluator does an application, and 1t makes
that decision. Providing different strategies permits a
trade-off between the size of residual terms and their
efficiency.

1The [-] notation indicates a conversion to higher order ab-
stract syntax; a specific definition is given in section 2. The
double encoding seen in the second and third projection occurs
because the first argument is itself a partial evaluator and ex-
pects its input to be in higher order abstract syntax.

We have not, unfortunately, been able to solve the
combinatorial explosion problem in precisely the way
that Mogensen suggested. Since Mogensen’s approach
relies heavily on the use of higher-order abstract syn-
tax, it is impossible to count occurrences of variables,
so we cannot determine which redexes are non-linear.
However, we have a variety of strategies that give in-
teresting results.

Strategies are a kind of program annotation direct-
ing the actions of the partial evaluator. The use of
such annotations is far from new — indeed, the earli-
est self-applicable partial evaluators required explicit
static/dynamic annotations [2]. More sophisticated
annotations for practical partial evaluation have been
studied by several researchers [1, 6, 7], particularly in
the context of on-line partial evaluation. The contri-
bution of this paper is not in the particular strategies
we present — indeed, our strategies are rather weak,
being constrained by the higher-order abstract syn-
tax representation of terms. Rather, it is the way our
strategies are incorporated into the partial evaluator
so as not to interfere with self-application.

In the next section, we review Mogensen’s results
from [4]. We then present the idea of strategies, and
our strategy-based partial evaluator in section 3. In
section 4, we discuss self-application of our partial
evaluator. In section b, we change the representation
of A-expressions slightly, in a way that permits the def-
inition of more strategies. In the final section, we show
that the results of binding-time analysis can be incor-
porated into a strategy-based off-line partial evalua-
tor, demonstrating that our approach in a sense sub-
sumes the BTA-based partial evaluators; we do this
with yet another change of representation, in which
expressions contain annotations which are written by
a pre-processor and read by the strategy.

2 Mogensen’s result

Mogensen’s self-applicable on-line partial evalua-
tor is most easily understood by considering each A-
expression to denote a value that contains both static
(function) and dynamic (expression) parts. We call
such values “partial evaluation values,” or PEV’s:

PEV = (PEV — PEV) x Expr

The type FExpr contains abstract syntax trees
(AST’s) representing A-expressions. Without saying
exactly how AST’s are represented (for now), we will
just postulate the existence of abstract syntax opera-
tors App, Abs and Var. App takes two AST’s to the
AST representing their application, and Var takes a
variable to an AST. Abs takes an abstraction mapping

A-terms to AST’s, and transforms it into an AST. This
contrasts with the usual approach in which Abs takes
as arguments a variable and an AST and returns an
AST. The difference is just the difference between the
higher-order abstract syntax used here and the first-
order abstract syntax usually used [5].

A-expressions are translated to PEV’s by the fol-
lowing rules. Note that these rules apply only to closed
expressions, so the translation of variables is techni-
cally “auxiliary.” In particular, [2] = « is not a PEV
but, given this rule, the translations of applications
and abstractions to produce PEV’s.

[1:A — PEV

(=] — oz

[mn] = [ml[n]
[Ax.e] — let g = Az.[e]

in <g, Abs(Aw.(g (D(Var(w))))2) >

where D : Ezpr — PEV = Xe. < Av.D(App(e, v2)), € >

The translation of abstractions merits some expla-
nation. An abstraction Az.e is easily translated to a
function from PEV’s to PEV’s, namely ¢ = Az.[e].
The problem is to turn that function into a PEV.
The function component? of the PEV is g itself; the
difficult part is constructing the expression compo-
nent, that is, going from a function to an expression.
This is done by applying ¢ to the PEV representing
a variable (D(Var(w))) and abstracting that variable
(Abs(Aw....)). To turn the variable Var(w) into a
PEV, we apply D, a function that takes any expres-
sion to a PEV. D(e) has e as its expression compo-
nent and, for its function component, has the function
F : PEV — PEV that “textually” applies e. That
is, given any PEV < ..., ¢ >, I returns the PEV
< F', App(e,€’) >, where F' when applied to PEV
< ...,e" > returns < ..., App(App(e,e’),e’) >, and
SO on.

A term is reduced by projecting the expression com-
ponent of this translation. The partial evaluator cre-
ates an application node from its two arguments and
normalizes it.

normalize e = [¢e]
PE m n = normalize(m n)

The following reduction sequence illustrates the op-
eration of the partial evaluator.

2We will often call the first and second components of a PEV
the function and expression components, respectively.

PE 0w (p) (0=.2))) (M)
normalize (Az.((Ay.y y) (Az.2))) (Aq.q))
[(Az.((Ay.y y) (Az.2))) (Aq.q)]2
[z (Ay-y y) (Az.2)))]h [(Ag-q)])2
(Az.[((Ay-y y) (Az.2))]) [(Aq-9)])2
[(Ay-y y) (Az.2))])2

[(Ayy)] [(Az.2)])e

(Ay.ly ul) [(Az.2)])2

(Ay-[wl [ol) [(Az.2)])2

(Ay-y1) [(A=.2)])2

[(Az.2)]h [(Az.2)])2

(Az.[2]) [(Az.2)])2

(Az.z) [(Az.2)])2

([(Az-2)])2
Abs(Aw.(Az.2)(D(V ar(w))))=2)

Abs(Aw.(D(V ar(w)))2)
Abs(Aw.V ar(w))

(
(
(
(
(
(
(
(
(

A N A

Mogensen shows how to render these ideas into A-
calculus. First, we need to represent the abstract syn-
tax of A-terms within A-calculus. A A-term e 1s trans-
lated to an Expr by the function [-], defined as:

[e] = Aarb.e, where T = =z
mn = amn
Az.e = b (Az.@)

Then, an Fapr is translated to a PEV by applying it
to terms A and B:

A = ApAp'p pf
B = Ag. < g,(Aab.b (Aw.(9 (D Aabw))2 a b)) >
D =Y MAm. < m, (Av.d (Aab.a (m a b) (v2 a b)) >

In other words, [e] = [e] A B. In the implementation,
1t 18 necessary to convert the arguments of the partial
evaluator into higher order abstract syntax first. So,
while [-] operates on terms of type A, the A-term cor-
responding to it in our implementation, which we call
P, operates on Eapr’s.

The code for the complete partial evaluator is given
in Figure 3, in the form of the input to our top-level
A-calculus reducer. Backslash represents A, semicolon
represents the end of a term, and colon-equal assigns
values into an environment (but only at the top level).
Note the A-calculus coding of pairs < a,b > as func-
tions Asel.sel a b.

In Figure 3, the D term has been rewritten as a
self-application of a similar term). This has the ef-
fect of delaying recursion until all the arguments to D
are known, and eliminating the need for the Y com-
binator. This was necessary since an explicit use of

P:=\mn. R (\ab. a(mabd) (nab);
R :=\m. mABF;
A:=\mn. mT n;
B := \g. \sel. sel
g \ab. b \w. g (D\ab. w) Fab);

D :=QQ;
Q :=\q. \m.

(\sel. sel (\qq. \v.

qq qq (\a b. a (m a b)
(v Fab)))
(\qq. m)
Q;

F := (\fst snd. snd);
T := (\fst snd. fst);

Figure 3: Mogensen’s partial evaluator

Y will result in a term with no normal form, and will
cause non-termination when the partial evaluator is
self-applied. This rewriting trick will show up in our
partial evaluator as well.

The ability to perform partial evaluation without
needing to decide explicitly whether or not a term
is static makes self-application feasible. Mogensen is
able to self-apply P, according to the Futamura pro-
jections in Figure 1. The idea, as usual, is that when
M is a 2-argument function and N is its first argu-
ment, P[M][N] returns the representation [My] of
an expression My. For any X, My X =g M N X,
but My X normalizes more quickly than M N X.

Mogensen uses as his main example this definition
of the Ackermann function:

Ack = dmn.m (Afm.f (m f (Ae.x)))

Some of his results are summarized in Table 1. The
p column indicates the speedup, measured in -
reductions, obtained by applying P[M][N] to an ar-
gument X, as compared to calculating M N X di-
rectly. For example, it takes 2.7 times as many -
reductions to produce Ack; by calculating P [Ack] [1]
as it does to produce it by applying Ackgen to [1].

3 Strategies

Mogensen’s partial evaluator, being on-line, does
not have the benefit of a binding-time analysis to tell
it when to statically or dynamically apply. If it had
to make such decisions itself, it would suffer combina-
torial explosion. So it just G-reduces everything. This
simplification makes self-application possible, but also
results in very large residual terms, as seen in Table 1.
In short, his partial evaluator has no effective control
of the partial evaluation process.

Expression Size 5 p
Ack 03— 4 7
Ack 13 —5 19
Ack 23 =9 76
P [Ack] [0] — [Acko] 10 119
P [Ack] [1] — [Ack:] 24 253
P [Ack] [2] — [Ack:] 52 512
Acko 3 — 4 3| 2.3
Ack1 3 =5 13 | 1.5
Ackz: 3 —9 65 | 1.2
P [P] [[Ack]] — [Ackgen] 693 8095
Ackgen [0] = [Acko] 10 56 | 2.1
Ackgen [1] — [Acki] 24 94 | 2.7
Ackgen [2] — [Ack2] 52 180 | 2.8
P TPTTP1T = [Pyen] 17819 | 268481

Table 1: Excerpt from Table 2 of [4]

We provide this control by giving the partial evalu-
ator a third argument, called a strategy. The strategy
tells the partial evaluator what to do when one PEV
is applied to another. The definition of PEV changes
to:

PEV = Strategy — Result
Result = (PEV — Result) x Expr
Strategy = PEV — PEV — Result

Again, a A-term is translated into a PEV. When
given a strategy — indicating how to handle appli-
cations that arise when normalizing this term — the
term returns a pair similar to the pairs described in
the previous section.

The translation of A-terms needs to be modified.
As above, [e] is the PEV associated with e:

[«] = @
[mn] — AX. X [m] [7]
[Ae.e] — let g = Az.([e] £) in
< g, Abs(Aw.(g (D(Var(w))) X)2) >
where D e ¥ = < Abs(Av.D(App(e, (v X)2)) X), € >

The partial evaluator is modified so as to take a
third argument:

normalize e ¥ = ([e])2
PEm n ¥ = normalize (m n) ¥

What does a strategy look like? Basically, given
PEV 7 to be applied to PEV =/, a strategy can either
statically apply @ — which means applying the func-
tion component of 7 to 7’ — or dynamically apply it
— meaning create an application node containing the

expression components of m and #’. The simplest ex-
ample is the strategy that uniformly performs static
application:

Yar = Am.(m Zau)1

That is, given PEV’s m and 7/, X, supplies itself to
7 (this says that the operator should be normalized
using the X,y strategy), which produces a Result. Tt
then selects the function component of this Result to
apply to «’.

When X4y 1s used, the results are identical to those
of Mogensen. To give a simple example:

PE (Az.((Ayy y) (Az.2))) (M.q) Zan
= Abs(Az.2)
=[Az.2]

Here is the first half of the reduction sequence. It
shows how X,;; forces the outer 3-reduction to be done
— eliminating the Ag.q term — and is then used as
the strategy for reduction of the resulting term:

(Az.((Ay-y y) (A=2.2))) (Ag-9) Tau

normalize (Az.((Ay.y y) (A2.2))) (Ag.q)) Zan
([(Az.((Ay-y y) (Az.2))) (Aq-9)]Zau)2

Zan [Az((Ay-y y) (Az.2)))] [(Aq-9)])2

[z ((Ay-y y) (Az.2)))] Tau)r [(Ag-q)])2
(Az.[((Ay-y y) (Az.2))] Zan) [(Ag-q)])2
[((Ayy y) (Az.2)] au)2

Abs(Az.Var(z))

o —

R T 2R R

We give examples of the use of our partial evaluator
on the Ack function in Table 2; these should be com-
pared to Mogensen’s results in Table 1. For instance,
we see from Table 1 that in Mogensen’s partial evalu-
ator, P[Ack][2] yields Acks, and that Acks 3 reduces
to 9 in 65 F-reductions. In the top part of Table 2 we
see the analogous results from our partial evaluator.
Specifically, P[Ack]|[2] Xay, which we call Acks qu,
corresponds directly to Mogensen’s Acks; the table
shows that Acks 4 3 reduces to 9 in 65 F-reductions.

Another simple strategy is not to [-reduce at all,
but to do only dynamic applications:

Ynone = /\7T(D ((ﬂ- Enone)Z) Enone)l
Given m and 7', ¥pone (also denoted as Xg) first re-
duces the operator m, using the non-reducing strategy,
then takes the expression components of the result and
turns 1t into a PEV by applying D. Recall that D pro-
duces a PEV that always does dynamic application (to
any number of arguments).

The effect of X, ,,e 18 to form an application node
and otherwise do no reduction. For example,

PE (Az.((Ay.y y) (Az.2)) (A.9)) Zhone
= App(Abs(Az. App(Abs(Ay.App(y, y)),
Abs(Az.2))), Abs(Aq.q))

= [z ((Ayy y) (A2.2)) (Ag.q))]

The first four steps of the reduction sequence are
similar to that of X,

E (Az.(Ay.y y) (A2.2))) (Aq.¢) Znone
normalize (Ax.((Ay.y v) (A2.2))) (Aq.q)) Enone
([(Az.((Ay.y y) (Az.2))) (Aq-0)]Bnone)2
(Az)ﬁ)]] [(Aq-a)])>

%
%
— zZ.Z

— Az.))) none)Z) Enone)l

(Enone [(Ax.((Ay.y)
(DU[(Az-((Ay-y v) (
[(Aq.9)])-

At this point, D forms a residual expression out of its
argument and residualizes future applications of that
argument.

To again compare our results to Mogensen’s di-
rectly, if we denote P [Ack] [2] Zpone by Acks none, We
see in Table 2 that Acks pone 3 reduces to 9 after 76 5-
reductions, compared to the 65 for Acks 4. Of course,
it takes fewer f-reductions to calculate Acks yone and,
perhaps more importantly, Acks yone 1s smaller. Thus,
we begin to see in the first few lines of Table 2 how
strategies allow us to trade speed for size (and partial
evaluation time).

We can get intermediate levels of expansion. Strat-
egy X, n performs the first n G-reductions (for some
n) and then no more.

En = An.n (AEATF(TF E)l) Enone

Here, n is a church numeral which will cause the AE
term to be applied n times, followed by ¥, ... For
example,

PE (Az.((Ayy y) (Az.2)) (Ag.q)) (Bn 1)
= App(Abs(Ay.App(y,y)), Abs(\z.2))

= [((Qyy y) (Az.2))]

In other words, the evaluator did one S-reduction —
the outer one — and then stopped.

Table 2 shows results using ¥,, with Ack, for n =
1, 4, and 8. We can see that as we go from (%)
up to (Xs), both the cost of computing the residual
function and its size increase, while the cost of ap-
plying that residual function decreases. In particular,
the efficiency of these residuals fall between those of
Acks none and Acks an.

Another “counting” strategy is the one that ab-
stains from doing top-level reductions, but does re-
ductions within subexpressions:

P:=\mns.R (\ab. a(mab) (nab)) s F;
R := \m. m A B;
B :=\g s. (\ sel. sel
(\x. g x s)
(\ab. b (\z. (snd (g (D (\a b. z)) s))
a b)));
A:=\mns. smn;
D := (DQ DQ);

DR := \q. \v. \s. (\sel. sel
(\qq. \v. (qq q@)
(\a b. a (v a b)
(fst (w s) a b)) s)
(\qq. v)
Q;

fst := \pair. pair (\fst snd. fst);
snd := \pair. pair (\fst snd. snd);

T := \fst snd. fst;
F := \fst snd. snd;
Y := (\h. (\x. h (x x)) (\x. h (x x)));

E_all := Y (\E. \pi. (fst (term E)));
E_none := Y (\E. \pi. fst
(D (snd (term E)) E));
E_n :=\n. n (AE. \pi. fst (term E)) E_none;
E_below-n := \ n. n (AE. \pi. fst
(D (snd (term E)) E)) E_all;

Figure 4: Strategy-based partial evaluator

Ebelow,n = An.n (/\E/\?T(D (71' E)z E)l Ea”

This applies D (the dynamic applier) n times, then
reverts to X,. This strategy might be useful for re-
ducing the arguments of an application without per-
forming the application itself:

PE (Az.((Ayy y) (Az.2)) (Xq.9)) (Zbetown 2)
= App(Abs(Ax.Abs(Az.z)), Abs(Aq.q))

= [(Az.(A2.2)) (Aq.q)]

On the other hand, Ypeiow,n n, for any n > 0, is
no different from X, ., when used with Ack, since
the operators and operands in those examples are in
normal form, and Xpejow,n 0 1s always identical to X4,
so we have not included this strategy in Table 2.

The A-calculus version of the strategy-based par-
tial evaluator is given in Figure 4. It is very similar
to Mogensen’s partial evaluator (corresponding to the
similarity of the definitions of [-] here and in section 2).

Figure 4 also gives the A-calculus definitions of the
strategies we have defined in this section. Note that
although we need to use Mogensen’s trick in the def-
inition of D to avoid non-termination, we can freely
use explicit recursion in the definitions of strategies.

This is because strategies are only executed by the
partial evaluator, and never processed as a term to be
partially evaluated, even during self-application of the
partial evaluator.

4 Self-application with strategies

Our version of the Futamura projections (Figure 2)
looks almost exactly like Mogensen’s. The difference is
that the results of partial evaluation here may not be
in completely reduced form. The strategies are used
to postpone some [F-reductions. The most aggressive
strategy — namely, X, — will produce the same re-
sults that Mogensen obtains, but other strategies will
produce expressions that are less reduced.

The crucial feature of self-application with strate-
gies is that the strategies are, so to speak, “off bud-
get.” The strategies never appear in residual code? |
so no matter how complicated the strategy used, the
ability to self-apply the partial evaluator is not im-
paired. TFor example, a strategy of the form (Arm. if
<wvery complicated, but terminating, condition> then
Yhone else Xpone) is equivalent to Ty one.

Furthermore, a strategy is used for only a single ap-
plication of the partial evaluator. For example, sup-
pose the second Futamura projection is used to create
a specialized partial evaluator: P [P] [[M]] ¥ =
[Mgen]. When Mg, is applied, it will be supplied
with another, perhaps different, strategy ¥’. Thus,
Mgen, might be produced using a non-aggressive strat-
egy like Xy one (so it will be small), but then applied
using an aggressive strategy (Xq;). Of course, the lat-
ter application will be more costly than if M., had
been produced using X4, but that is the entire point:
trading space for time.

Table 2 presents a sampling of results of various
projections with various strategies. The applications
that use X, are directly comparable to Mogensen’s
results. The size of the results of the first projection,
when X,y is the strategy, are of course identical to Mo-
gensen’s. The sizes for the other projections are larger,
because our partial evaluator is somewhat larger. (In-
deed, we have been unable to generate P, with the
Yqu strategy, because it is too large. By using less
aggressive strategies we are able to get some approx-
imations (i.e., Pgenyy, Pgensos ald Pgens,) but the re-
sulting program generators have too many residualized
expressions, and so partial evaluation actually yields
a slowdown.) The bottom section of the table shows
the application of our partial evaluator to Mogensen’s

3This is not completely accurate, since a strategy that per-
forms a residualization will need to supply the actual application
node itself, but none of the strategy’s “decision making” code
will be left in the residual code.

FEaxpression Size | O P)
Ack 23— 9 21 | 76
P [Ack] [2] Xy — Acka an 52 | 744

P [Ack] [2] o — Ack20 35 | 492

P [Ack] [2] 1 — Ackz 32 | 466

[Ack] [] 24 — Ack274 35 523

[Ack] [] Eg — Ackgyg 49 791
Acka g 3—9 21 | 76 1.0
Acks1 3= 9 21 | 75 1.013
Acksa 39 21 | 73 1.041
Acksg 3—9 21 | 69 1.101
Ackg a1 39 21 | 65 1.169
P [P] [[Ack]] o — Ackgen,o 506 | 3120
P [P] [[Ack]] s — Ackgen,g 339 | 4746
P [] [[ACk]] Yea — ACkgen 64 5532 | 76427
P [] [[ACk]] Yo — ACkgen 96 3848 | 51104
P [] [[ACk]] all = ACkgen all 3842 51072
Ackgeno [2] = Acks 52 | 758 0.981
Ackgens [2] = Acks 52 | 751 0.991
Ackgenea [2] = Acka 52 | 621 1.198
Ackgen,06 [2] = Acks 52 | 510 1.459
ACkgen all [] — Ack2 52 510 1.459
P [P][[P]] 10 =+ Pgenio 644 | 9184
P [P][[P]] 50 — Pgenso 47672 | 643247
P [P] [[P]] 70 — Pgenzo 170154 | 2297039
P [P][[P]] Zau = Pgenau 707
Pgenm [[Ack]] Eall — ACkgen,all 3842 52022 0.982
Pgen50 [[Ack]] Eall — ACkgen,all 3842 51992 0.982
Pgenzo [[Ack]] Zoy = Ackgen,an 3842 | 51520 0.991
P [mP] [[mP]] Zau = mPyen,aul 18083 | 408860
P [T)’LP] [[mP]] Y10 = mPgen,lO 528 | 7487
P [mP] [[mP]] Z50 = mPgen,s0 8188 | 110161
P [mP] [mP]] S100 =+ mPgen,100 | 23893 | 321046
P [mP] [[mP]] 500 =+ mPgen,s00 | 19976 | 431987
M Pgen,att [[Ack]] = Ackgen 693 | 2422 3.342
mPgen 10 [[Ack]] = Ackgen 693 | 8124 0.996
mPgen 50 [[Ack]] = Ackgen 693 | 8090 1.001
M Pgen 100 [[Ack]] = Ackgen 693 | 7746 1.045
M Pyen 500 [[Ack]] = Ackgen 693 | 2503 3.234

Table 2: Results of the strategy-based partial evalua-
tor

(denoted mP in the chart); we have included these
numbers because they can be compared even more di-
rectly to those in Table 1.

The results are rather difficult to read, because
there are several degrees of freedom. What is of great-
est interest is the trade-off between the size of residual
code and the cost of applying it. For the third projec-
tion, note that while more aggressive expansions yield
versions of Py, that take fewer f-reductions to pro-
duce Ackgep, the code size grows dramatically.

5 More strategies

The strategies of the previous section are oblivi-
ous to the properties of the expressions being evalu-
ated. Obvious strategies like “expand if the argument

is small,” “expand calls to function f, but no oth-
ers,” and “expand if there is only one occurrence of
the bound variable in the body of the A-expression”
cannot be written. In this section, we make a simple
change in the abstract syntax of A-terms which will al-
low the first of these strategies to be written. To write
the second requires a further change of representation
which we postpone to the next section. To write the
third strategy — the one suggested by Mogensen —
seems to be impossible when terms are represented in
higher-order abstract syntax; switching to first-order
abstract syntax is a possibility that we are currently
exploring (see the conclusions).

The representation of A-terms given in section 2 is
not the most general representation of higher-order ab-
stract syntax trees of A-terms. In that representation,
variables are treated specially, making some calcula-
tions impossible. We have used that representation to
make our results directly comparable to those of Mo-
gensen. However, to allow for expressing more strate-
gies, we will now change the representation as follows:
e is again represented by the term [e], where

[e] = AaAbAcE, where T = c=x
Az.e = b(Az.@)
mn = amn

The difference is the application of AST operator ¢ to
variables.

Now we can, for example, determine the size of a
lambda expression:

size e = [e] (Amn.inc (plus m n))
(Ag-inc (g 1))
(Az.1)

Before using strategies based on this new capability,
we need to change the partial evaluator slightly to
accommodate the new representation. The new code
is shown in Figure 5.

The results obtained previously, shown in Table 2,
will change slightly, because representations of terms
are larger. But now we can write more interesting
strategies, such as X man:

Yemall = An AT AT
let r = m (Zsmanr 1)
and ' = 7' (Zsman n)
in if size(r}) < n
then ry
else (D ry (Zsmau n))1 o

This strategy takes as its arguments a number n and
two terms 7 and #’. After applying itself to its ar-
gument 7, it checks to see if the size of the resulting

R :=\m. mA B C;
P:=\mns.R(Nabc.a(mabc)
(nabc)) s F;
C := \x.x;
B :=\g s sel.
sel (\x. g x s)
(\abc. b (\z.
(snd (g (D (\abc. cz))s) abc);
A :=\mns. smn;
D := (DQ DQ);
DR := \q. \v. \s.
(\sel. sel
(\aqq. \v. (qq qq)
(Nabc. a(vabc)
(snd (w s) ab c)) s)
(\qq. v)
q);

Figure 5: Strategy-based partial evaluator, with mod-
ified term representation

expression r’ is smaller than or equal to n. If so, it
then reduces m by applying it to X4y, otherwise it
residualizes 7.

Here is the running example modified slightly to
illustrate the operation of Xgpqy. First we use
(Ejanall 1):

PE Az ((Ay.y y) (A2.2)) (Aq-q q)) (Zsman 1)
= App(Abs(Ax. App(Abs(Ay.App(y,v)),
Abs(Az.Var z))), Abs(A\q. App(Var q,Var q)))

= [(Az.((Ay.y y) (A2.2))) (Ag.q)]

Since the smallest argument in the example is (Az.z),
which has a size of 2, no applications are performed.
Next we use (Zgmau 2):

PE (Ae.((Avy y) (A2.2)) (Ag-q 0) (Ssmant 2)
= App(Abs(Ax.Abs(Az.Var z)),
Abs(Aq. App(Var q,Var q)))

= [(A\2.(A2.2)) (Ag.q q)]

The outer argument (Aq.¢ ¢) has a size of 6, so it is
residualized. However, the argument (Az.z) inside the
body of the outermost function is small enough, so the
(Ay.y y) is applied to it. The result is (Az.2) (Az.2),
which again meets (X;mqn 2)’s criteria for reduction,
so it is reduced to (Az.z).

If we use (Zsmau 6), the entire expression is re-
duced.

Keep in mind that these strategies, though very
costly to apply (especially since all arithmetic is done
using Church numerals), do not appear in residual

code and therefore do not impede self-application of
the partial evaluator.

Often strategies produce unexpected results. For
example, consider the term

((Aa.(Ab.(Ac.c) (Ar.r 7)) (Az.z)) (Ag.q q))

There are three applications at the top level. If we ap-
ply the (Zsman 3) strategy none of these applications
will be performed, even though the argument to the
Ab term has a size of 2. This is because the argument
to the Aa term has a size of 6, and must be performed
first in order for the Ab redex to be reachable. What
we need is a strategy that behaves like X,y for one
level, and then behaves like X, qi afterwards.

The solution is to compose strategies. For this ex-
ample, we want a strategy that will perform the first
few [G-reductions at the top level, and then gives con-
trol to M;man. This new strategy is called Xy, then,
and is a generalization of %, .

Yhthen = AAX.n (AEAT. (7 E)) 2

Thus, (X, then n X) performs f-reductions at the top
n levels of the term, then reverts to X.
Using this strategy with our example gives us:

PE ((Aa.(Ab.(Ac.c) (Ar.r 7)) (Az.z)) (Ag.q q))
(En,then 1 (Esmall 3))
= [(Ac.c) (Ar.r 7)]

The first two applications were reduced, while the
third was residualized.

These strategies allow finer control of partial eval-
uation in self-application as well. For example, we
can create an Ackge, using the second projection. If
we use the Yo, strategy, Ackge, is of size 269, and
needs 845 f-reductions to execute when applied to 2
and Xqy. If we use (Xn then 5 (Zsman 20)) the size is
263, and needs 843 (-reductions. Finally, using X,y
results in a much larger term of size 4446, but it only
needs 548 [-reductions. Lack of space prevents us
from presenting more experimental results.

6 Annotations

Some desired strategies — such as expanding calls
to specific, named functions — cannot be expressed,
because they are based on extrinsic considerations.
We can accommodate these strategies by changing the
representation yet again, to include an annotation field
in each A-term. Though this clearly crosses the line
from on-line to off-line partial evaluation — since the
annotations on each term will be made by some pre-
processing step — we feel it is still interesting to see

how strategies can use these annotations. Further-
more, it demonstrates that the use of strategies is in
some sense more general than the use of binding-time
analysis.

For our final change of representations, we add an
annotation field to abstractions. For this example the
annotation will be a boolean value which expresses
whether or not we want to perform a S-reduction if
given the opportunity. Annotations of this type are
discussed in chapter 7 of [3].

A A-expression e is represented by

Aabc.€, where T = (cu)
Ar.e = (b X Az.)
mn = (amn)
X ts T or F.

The translation of terms to PEV’s must take into ac-
count the transmission of annotations from one term
to another:

[«] =z
[mn] — AZ. X [m] [n]
[Me.e] — let g = (Az.[e] £) in
<T, <g,Abs(Aw.(g D(Var(w))
¥)) >>

Our last version of the partial evaluator is shown in
Figure 6.

Because the representation of expressions has
changed, strategies such as ¥, 4, will need to be mod-
ified. Projecting the first element from the Result pair
returns another pair consisting of the annotation and
the expression. Here is the modified ¥, ,pe:

Enone = AF((D ((ﬂ- Enone)Z)Z Enone)Z)l
A more interesting strategy is Xarked:

Ymarked = AT.
let r = 7 Yarked
in ifr then (r2);
else ((D ((t Enone)Z)Z Enone)Z)l

Similar to Xgpen, it first applies its argument 7 to
itself to get r. But instead of checking the size of r,
it checks the annotation field. If that is true, then it
returns the static part of r; otherwise, 1t uses X, one
and D to residualize.

As an example, consider the expression from the
previous section. With X, 4.4 we could annotate the
first two abstractions to be reduced, and the final one
to be residualized. Here is the example again, with the
abstractions marked for residualization underlined.

R :=\m. mA B C;
P:=\mns.R (Nabc.a(mabc)
(nabc)) sFF;
C := \x.x;
B:=\ngs. (\ sel. sel n
(\selExp. selExp
(\x. g x s)
N\abc. bT (\z.
(fst (snd (g (D (\a b c. ¢ z))
s))) ab c)))
A :=\mns. smn;
D := (DQ DQ);

DQ :=\q. \v. \s. (\sel. sel T
(\selExp. selExp
(\aqq. \v. (qq qq)
(Nabc. a(vabc)
(snd (snd (v s)) a b c)) s)
(\qq. v)
qQ));

Figure 6: Strategy-based partial evaluator, using an-
notations

PE ((Aa.(Ab.(Ac.c) (Arar 7)) (Aw.x)) (AM-q ¢)) Zmarked

= [(Ac.c) (Arr)]

If a binding time analyzer were employed to an-
notate terms, our partial evaluator with the ¥, 4rked
strategy would mimic an off-line partial evaluator.

7 Conclusions

We have presented a technique for control-
ling on-line partial evaluation while preserving self-
applicability. Strategies are used by the partial eval-
uator as “advisors” on when to f-expand, but do not
appear in residual code. Thus, no matter how compli-
cated the decision-making process they employ, self-
applicability is not compromised. Strategies can con-
sider intrinsic properties of A-terms and, crossing over
into the realm of off-line partial evaluation, can con-
sider annotations on terms that express the results of
pre-processing.

A number of research problems present themselves
from this work. The results obtained from many of
the strategies we have defined are far from intuitive.
A more systematic experimental study of space-time
trade-offs in partial evaluation could lead to a better
understanding of what approaches to partial evalua-
tion are best. It would also be interesting to incor-
porate binding-time analysis into strategies; section 6

discussed how this can be done, but we have not yet
experimented with an actual binding-time analyzer.
Note that strategies allow for partial evaluation of
terms that have no normal form, that is, terms with
explicit recursion. This fact could allow us to substan-
tially simplify and generalize P.

The systematic construction of strategies by way
of a “strategy algebra” seems well within reach, and
would be useful. X, ;5. 18 an example of a simple
composition of strategies, and it would appear that
many such combinations are possible.

The most exciting possibility for this approach is
that strategies might be applicable in partial evalua-
tors based on first-order abstract syntax. This would
go a long way toward bridging the gap between on-line
and self-applicable partial evaluators. Strategies could
make static-vs.-dynamic decisions with great preci-
sion, as is now done only in on-line partial evaluators,
vet self-applicability would be preserved.

Acknowledgments

We would like to thank our colleagues Uday Reddy
and Bill Harrison for helpful discussions over the
course of this research.

References

[1] B. Grant, M. Mock, M. Philipose, C. Chambers,
S. Eggers, Annotation-Directed Run-Time Special-
ization in C, Proc. ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Pro-
gram Manipulation (PEPM), June 1997. Amster-
dam, Netherlands.

[2] Neil D. Jones, Peter Sestoft, and Ha rald
Sendergaard. Mix: A self-applicable partial eval-
uator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9-50, 1989. DIKU
Report 91/12.

[3] Neil D. Jones, Carsten K. Gomard, and Peter Ses-
toft. Partial Fvaluation and Automatic Program
Generation. Prentice Hall International Series in

Computer Science. Englewood Cliffs, NJ: Prentice
Hall, 1993.

[4] Torben A. Mogensen. Self-applicable online par-
tial evaluation of the pure lambda calculus. In Par-
tial Evaluation and Semantics-Based Program Ma-
nipulation, La Jolla, California, June 1995, pages
39-44. New York: ACM, 1995.

[5] Frank Pfenning and Conal Elliott. Higher-order
abstract syntax. In Proceedings of the ACM SIG-
PLAN 7’88 Symposium on Language Design and

Implementation, pages 199-208, Atlanta, Georgia,
June 1988.

[6] Eric Ruf. Topics in Online Partial FBvaluation.
PhD thesis, Stanford University, California, Febru-
ary 1993. Published as technical report CSL-TR-
93-563.

[7] E. Volanschi, C. Consel, G. Muller, C. Cowan,
Declarative specialization of objet-oriented pro-
grams. OOPSLA ’97, Atlanta, Oct. 1997, pp. 286—
300.

